# Slides MH1810 2016 Part 3 6 Linearization

View again

All materials on our website are shared by users. If you have any questions about copyright issues, please report us to resolve them. We are always happy to assist you.
Description
3ft1q3w1ft
Share
Tags

## Analysis

Transcript
MH1810 Math 1 Part 3 Di¤erentiation LinearizationTang Wee Kee Nanyang Technological University Tang Wee Kee (Nanyang Technological University)   MH1810 Math 1 Part 3 Di¤erentiation 1 / 13  Linearization Aim: To approximate  f   ( x  )  near  x   =  a  by a linear function  L ( x  )  through x   =  a . De…nition The linearization of   f   at  a  is the linear function L ( x  ) =  f   ( a ) + ( x   a ) f  0 ( a ) Diagram to illustrate: Tang Wee Kee (Nanyang Technological University)   MH1810 Math 1 Part 3 Di¤erentiation 2 / 13  Remark (a) Note that the equation  y   =  L ( x  ) , i.e., y   =  f   ( a ) +  f  0 ( a )( x   a ) is the equation of tangent of the curve  y   =  f   ( x  )  at  x   =  a .(b) Linearization is a local approximation for  f   at  a  via the tangent of  y   =  f   ( x  )  at  x   =  a .We use the linearization  L ( x  )  to approximate value of   f   ( x  )  for  x   near a , i.e.,  f   ( x  )  L ( x  ) . Tang Wee Kee (Nanyang Technological University)   MH1810 Math 1 Part 3 Di¤erentiation 3 / 13  Remark (c) (OPTIONAL.) There is also quadratic approximation of   f   at  x   =  a .More generally, if   f   can be di¤erentiated  n  times at  x   =  a , we havethe Taylor’s polynomial  P  n ( x  )  (degree  n ) of   f   ( x  )  at  x   =  a , . P  n ( x  ) =  f   ( a ) + ( x   a ) f  0 ( a ) + ( x   a ) 2 2 !  f  00 ( a )+  + ( x   a ) k  k  !  f   ( k  ) ( a )+  + ( x   a ) n n !  f   ( n ) ( a ) . Tang Wee Kee (Nanyang Technological University)   MH1810 Math 1 Part 3 Di¤erentiation 4 / 13
Related Search
Similar documents

### Slides_MH1810_2016_Part_3_3_Impl_diffn

View more...

#### Allergic Contact Dermatitis Immune System Involvement 