Isobaric Vapor-Liquid Equilibria of Mesitylene + 1- Heptanol and Mesitylene +1Octanol at 97.3 kPa

 Design

 0 views
of 6
All materials on our website are shared by users. If you have any questions about copyright issues, please report us to resolve them. We are always happy to assist you.
Description
Isobaric Vapor-Liquid Equilibria of Mesitylene + 1- Heptanol and Mesitylene +1Octanol at 97.3 kPa
Share
Tags
Transcript
    Isobaric Vapor-Liquid Equilibria of Mesitylene + 1-Heptanol and Mesitylene +1-Octanol at 97.3 kPa Seema Kapoor,   Sushil   K. Kansal, Baljinder K. Gill,   Aarti Sharma and Swati Arora 1  Abstract  —  Isobaric vapor-liquid equilibrium measurements are reported for the binary mixtures of Mesitylene + 1-Heptanol and Mesitylene + 1-Octanol at 97.3 kPa. The measurements have been  performed using a vapor recirculating type (modified Othmer's) equilibrium still. Both the mixtures show positive deviation from ideality. The Mesitylene + 1-Heptanol mixture forms an azeotrope whereas Mesitylene + 1- Octanol form a non – azeotropic mixture. The activity coefficients have been calculated taking into consideration the vapor phase nonideality. The data satisfy the thermodynamic consistency tests of Herington, and Hirata. The activity coefficients have been satisfactorily correlated by means of the Margules, Redlich-Kister, Wilson, Black, and NRTL equations. The activity coefficient values have also been obtained by UNIFAC method.  Keywords — Binary mixture, Mesitylene, Vapor-liquid equilibrium, 1-Heptanol, 1-Octanol. I. INTRODUCTION HE  measurement, modeling and computation of phase equilibria have been one of the most compelling problems of chemical engineering. The variety of experimental and computational methods developed by chemical engineers and  physical chemists for measurement and thermodynamic interpretation of vapor-liquid equilibria probably surpasses all other areas of chemical engineering research.   The vapor-liquid equilibria information is useful in designing separation processes such as distillation, adsorption, stripping and liquid-liquid extraction, which are major components of industrial processes involving hydrocarbons, and their cost frequently represents a major fraction of total plant cost. Also the vapor-liquid equilibrium studies have assumed greater importance with the expansion of petrochemical industry and the fast   increase in number of  pure components that are required to be distilled. Dr.Seema Kapoor is with the Univ. Institute of Chemical Engineering & Technology, Panjab University, Chandigarh-160014, India. (corresponding author; phone: +91-9815756789; fax: +91-172-2779173; e-mail: seemakap_2004@sify.com). Dr. Sushil K. Kansal is with the Univ. Institute of Chemical Engineering & Technology, Panjab University, Chandigarh-160014, India (e-mail: sushilkk1@yahoo.co.in). Baljinder K. Gill   is with the Dept. of Chemical Engineering, Beant College of Engineering and Technology, Gurdaspur-143521, India (e-mail: bkg-72@hotmail.com). Aarti Sharma is with the Univ. Institute of Chemical Engineering & Technology, Panjab University, Chandigarh-160014, India. (e-mail: aartisharma01@gmail.com). Swati Arora is with the Univ. Institute of Chemical Engineering & Technology, Panjab University, Chandigarh-160014, India. (e-mail: swati_arora@ymail.com). Very limited work has been reported on vapor-liquid equilibrium study of binary mixtures containing mesitylene as one of the components. Such components form industrially important combinations in petroleum and petrochemical industries. In view of their close boiling point and varied  binary interactions, separation becomes difficult. For the rigorous simulation and optimization of the separation of C 9  aromatic compounds, an accurate description of vapor-liquid equilibria is required. As part of a wide experimental and theoretical study on thermodynamic and physicochemical properties of binary liquid mixtures containing C 9  aromatic compounds and linear alcohols, and with the aim of studying in depth, the behavior of these kinds of mixtures, we are reporting experimental vapor-liquid equilibrium data for binary mixtures of mesitylene with 1-heptanol and 1-octanol. The measurements were performed under isobaric conditions at a pressure of 97.3 kPa using a modified version of the recirculating type equilibrium still that has been described earlier [1], [2]. The  binary mixture of mesitylene and 1-heptanol has a boiling range of 12.03 K and the binary mixture of mesitylene and 1-octanol has a boiling range of 30.55 K. II. EXPERIMENTAL Chemicals: Mesitylene and 1-Octanol were obtained from Merck-Schuchardt, Germany and 1-Heptanol was obtained from Spectrum (P) Ltd., Mumbai, India. All the chemicals were AR grade materials and had purities (by chromatographic analysis) of 99.0 %, 98.5 % and 99.0 % respectively. The chemicals were purified using standard  procedures [3] and stored over molecular sieves. Apparatus and Procedure: The vapor-liquid equilibrium data were obtained by using a modified version of the equilibrium still. The equilibrated mixtures were analyzed using a Bausch and Lomb Abbe-3L refractometer. The apparatus, modifications, and analytical techniques have already been described earlier [4]. All the measurements were made at a constant temperature with the help of a circulating-type cryostat (type MK70, MLW, Germany) maintained at a temperature within ± 0.02 K. The estimated uncertainties in the measurements of mole fraction were ± 0.0002, in refractive index were ± 0.0002, in temperature were ± 0.02 K. III. RESULTS AND DISCUSSION The liquid-phase activity coefficients ( γ   ) were calculated from the experimental data using the equations [5] below, which take into account the vapor phase nonideality: T International Journal of Chemical and Biological Engineering 2:3 2009125    ]/)(}/))(exp[{()/( 2212011111 0111  RT  yP RT PPV  B xP yP  δ γ    +−−=   (1)   ]/)(}/))(exp[{()/( 2112022222 0222  RT  yP RT PPV  B xP yP  δ γ    +−−=   (2) 22111212 2  B B B  −−= δ    (3)   where  x 1 ,  x 2  and  y 1 ,  y 2  are the equilibrium mole fractions of components 1 and 2 in the liquid and vapor phases, respectively; T  and P are the boiling point and the total  pressure; V  1 and V  2  are the molar liquid volumes;  B 11 and  B 22  are the second virial coefficients of the pure components; and  B 12 is the cross second virial coefficient. Table I gives the physical constants of the pure components. The pure component vapor pressures ( 0 P ) were calculated according to the Antoine equation: [ ] )15.273/()133.0/( 0 −+−= T C  B AP Log  (4) The Antoine’s constants  A ,  B , and C   are reported along with physical constants of pure components in Table I. The experimental vapor-liquid equilibrium data ( T  ,  x 1 , and  y 1 ) at 97.3 kPa along with the calculated activity coefficients for Mesitylene + 1-Heptanol are presented in Table II and for Mesitylene + 1-Octanol are presented in Table III. The Lyckman, Eckerts and Prausnitz [6] correlation   was used for the estimation of liquid molar volumes. The Pitzer and Curl equation modified by Tsonopoulos [7] was used in the evaluation of second virial coefficient as well as cross virial coefficients in this work. TABLE I PHYSICAL CONSTANTS OF THE PURE COMPOUNDS Constant Mesitylene 1-Heptanol 1-OctanolMolecular wt 120.19 [8] 116.20 [8] 130.23 [8]Boiling point at 101.3 kPa (K) 437.35 [ 8] 449.38 [8] 468.20 [8] Refractive index,  D n  at 298.15 K 1.4998 [9] 1.4230 [9] 1.4428 [9] c T   (K) 637.30 [8] 633.00 [8] 652.50 [8] c P (kPa) 3170.69 [8] 3041.026 [8] 2859.70 [8] c V  · 10 6 (m 3 ·mol -1 )   433 [8] 435 [8] 490 [8] Accentric factor, ω   0.399 [8] 0.560 [8] 0.587 [8] Dipole moment,   µ  (Debyes) 0.1[8] 1.7 [8] 2.0 [8] Constants of Antoine’s equation, eq.4  A  7.07436 [10] 6.97899 [10] 6.74900 [10]   B  1569.622 [10] 1321.126[10] 1257.560 [10] C   209.598 [10] 145.985 [10] 129.877 [10] TABLE   II VAPOR     –LIQUID   EQUILIBRIUM   DATA   OF   THE   MESITYLENE   (1)   + 1-HEPTANOL   (2)   SYSTEM   T  (K) 1  x   1  y  ln 1 γ    ln 2  436.25 0.9880 0.9800 -0.0071 0.8599 435.85 0.9378 0.9150 -0.0136 0.6741 435.65 0.9018 0.8830 -0.0051 0.5424 435.55 0.8225 0.8225 0.0185 0.3706 435.95 0.7217 0.7437 0.0386 0.2760 436.54 0.6146 0.6640 0.0713 0.2030 438.21 0.4463 0.5340 0.1324 0.1170 438.95 0.4007 0.4950 0.1463 0.0960 441.78 0.2806 0.3870 0.1880 0.0233 442.99 0.2316 0.3363 0.2111 0.0013 445.15 0.1394 0.2290 0.2830 -0.0244 446.65 0.0746 0.1370 0.3601 -0.0271 447.65 0.0321 0.0650 0.4347 -0.0201 TABLE   III VAPOR     –LIQUID   EQUILIBRIUM   DATA   OF   THE   MESITYLENE   (1)   + 1-OCTANOL   (2)   SYSTEM   T  (K) 1  x   1  y  ln 1 γ    ln 2 γ    437.34 0.9921 0.9960 -0.0219 0.1798 438.56 0.9609 0.9800 -0.0361 0.1532 439.69 0.9167 0.9571 -0.0402 0.1238 440.15 0.8772 0.9370 -0.0285 0.1052 443.26 0.7116 0.8462 0.0042 0.0458 445.42 0.6088 0.7870 0.0367 0.0000 447.30 0.5512 0.7501 0.0442 -0.0345 449.56 0.4807 0.6990 0.0586 -0.0623 450.88 0.4450 0.6710 0.0648 -0.0788 453.95 0.3646 0.5990 0.0815 -0.1054 456.25 0.3154 0.5499 0.0900 -0.1301 457.55 0.2763 0.5070 0.1127 -0.1313 460.46 0.2060 0.4190 0.1526 -0.1405 461.75 0.1769 0.3780 0.1744 -0.1437 463.05 0.1495 0.3350 0.1941 -0.1448 464.50 0.1134 0.2720 0.2320 -0.1348 465.63 0.0874 0.2210 0.2616 -0.1261 466.10 0.0737 0.1910 0.2760 -0.1156 The data for the systems were assessed for thermodynamic consistency by applying the Herington area test [11] and Hirata test. The tests show that the experimental data are thermodynamically consistent. The activity coefficients were correlated with Redlich-Kister, Margules, Wilson, Black, and NRTL [12] equations. The adjustable parameter α 12  for the NRTL correlation equation was set equal to 0.3 for the Mesitylene + 1-Heptanol system and was set equal to 0.4 for Mesitylene + 1-Octanol system. The estimation of parameters for the three correlation equations is based on minimization of )/ln( 21  γ  γ    as an International Journal of Chemical and Biological Engineering 2:3 2009126    objective function using the nonlinear least square method of  Nagahama, Suzuki, and Hirata as used by Rattan et al. [13]. The correlation parameters 1  A , 2  A , 3  A  and deviation in vapor phase composition are listed in Table IV for Mesitylene + 1-Heptanol system and in Table V for Mesitylene + 1-Octanol system. The Redlich-Kister equation gave the best fit with 0.0239 as the average absolute deviation in the vapor  phase composition of mesitylene for Mesitylene + 1-Heptanol system and The Black equation gave the best fit with 0.0240 as the average absolute deviation in the vapor phase composition of mesitylene for Mesitylene + 1-Octanol system. TABLE IV CORRELATION PARAMETERS FOR ACTIVITY COEFFICIENT AND DEVIATION IN VAPOR-PHASE COMPOSITION FOR THE MESITYLENE (1) +1- HEPTANOL (2) SYSTEM   Correlations  A 1    A 2    A 3  Deviation ( Δ  y ) Redlich-Kister 0.5198 0.1473 0.2010 0.0239 Margules 0.5753 0.8681 0.8040 0.0241 Black 0.4068 0.7184 0.1577 0.0785 Wilson 1.2800 0.3260 - 0.1965  NRTL 0.7297 0.1428 - 0.0298 TABLE V CORRELATION PARAMETERS FOR ACTIVITY COEFFICIENT AND DEVIATION IN VAPOR-PHASE COMPOSITION FOR THE MESITYLENE (1) +1- OCTANOL (2) SYSTEM   Correlations  A 1    A 2    A 3  Deviation ( Δ  y ) Redlich-Kister 0.3887 -0.0275 -0.1410 0.0459 Margules 0.2751 0.2201 -0.5642 0.0461 Black 0.4182 0.3631 -0.1430 0.0240 Wilson 0.6300 1.0600 - 0.1789  NRTL 0.0921 0.3256 - 0.0362 Fig. 1 shows the experimental vapor–liquid equilibrium data for the binary mixture of Mesitylene + 1-Heptanol. In Fig. 2, the Temperature vs. Composition curves are drawn for the Mesitylene + 1-Heptanol system at 97.3 kPa. The mixture forms an azeotrope corresponding to T= 435.55 K and x= 0.8225. Fig. 3 shows the plot of ln value of activity coefficients as obtained by UNIFAC [14] method vs. composition for the Mesitylene + 1-Heptanol system. The graph clearly indicates positive deviation from ideality. Fig. 4 shows the plot of y vs y c  for the Mesitylene + 1-Heptanol system using NRTL equation. 0.00.10.20.30.40.50.60.70.80.91.00.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 x 1   y    1   Fig. 1. VLE of the Mesitylene + 1-Heptanol system at 97.3 kPa.   4344364384404424444464484500.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Composition    T  e  m  p  e  r  a   t  u  r  e   (   K   )   Fig. 2. Temperature vs. Composition curves for the Mesitylene +  1-Heptanol system at 97.3 kPa. International Journal of Chemical and Biological Engineering 2:3 2009127    -0.10.00.10.20.30.40.50.60.70.80.91.00.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 mol fraction of mesitylene in liquid phase    l  n      1  ,   l  n      2    (   A  c   t   i  v   i   t  y  c  o  e   f   f   i  c   i  e  n   t   )   Fig. 3. Plot of ln γ   1,   ln γ   2  vs. composition for the Mesitylene +  1-Heptanol system at 97.3 kPa.  ––, UNIFAC. 0.00.10.20.30.40.50.60.70.80.91.00.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 mol fraction of mesitylene in vapor phase (exptl.)   m  o   l   l   f  r  a  c   t   i  o  n  o   f  m  e  s   i   t  y   l  e  n  e   i  n  v  a  p  o  r  p   h  a  s  e   (   N   R   T   L   )  Fig.4. y vs y c  plot for the Mesitylene +  1-Heptanol system using NRTL equation. 0.00.10.20.30.40.50.60.70.80.91.00.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 x 1   y    1  Fig. 5. VLE of the Mesitylene + 1-Octanol system at 97.3 kPa. 4354404454504554604654700.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Composition    T  e  m  p  e  r  a   t  u  r  e   (   K   )   Fig. 6. Temperature vs. Composition curves for the Mesitylene +  1-Octanol system at 97.3 kPa. International Journal of Chemical and Biological Engineering 2:3 2009128    -0.2-0.10.00.10.20.30.40.50.60.70.80.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 mol fraction of mesitylene in liquid phase    l  n      1  ,   l  n      2    (   A  c   t   i  v   i   t  y  c  o  e   f   f   i  c   i  e  n   t   )   Fig. 7. Plot of ln γ   1,   ln γ   2  vs. composition for the Mesitylene +  1-Octanol system at 97.3 kPa.  ––, UNIFAC. 0.00.10.20.30.40.50.60.70.80.91.00.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 mol fraction of mesitylene in vapor phase (exptl.)   m  o   l   f  r  a  c   t   i  o  n  o   f  m  e  s   i   t  y   l  e  n  e   i  n  v  a  p  o  r  p   h  a  s  e   (   N   R   T   L   )  Fig. 8. y vs y c  plot for the Mesitylene +  1-Octanol system using NRTL equation. Fig. 5 shows the experimental vapor–liquid equilibrium data for the binary mixture of Mesitylene + 1-Octanol. In Fig. 6, the Temperature vs. Composition curves are drawn for the  binary system of Mesitylene + 1-Octanol at 97.3 kPa. Fig. 7 shows the plot of ln value of activity coefficients as obtained  by UNIFAC method vs. composition for the Mesitylene + 1-Octanol system. The graph clearly indicates positive deviation from ideality. Fig. 8 shows the plot of y vs y c  for the Mesitylene + 1-Octanol system using NRTL equation. IV.   CONCLUSION Vapor-Liquid equilibrium data at P=97.3 kPa for the binary systems Mesitylene + 1-Heptanol, and Mesitylene + 1-Octanol were determined. Mesitylene forms an azeotrope with 1-Heptanol at this pressure, but not with the immediate next member of the same homologous series i.e. 1-Octanol. The  present work will be of great use in updating and improving the databank for estimation of model parameters for mixtures formed by C9 compounds with aliphatic alcohols, and thus will enhance the predictability of the group contribution model. R  EFERENCES [1]   B. N. Raju, R. Ranganathan, and M. N. Rao, “Vapor-liquid equilibrium still for partially miscible systems,”  Indian Chemical Engineer  , 1965, vol. 7, pp. T33–T37. [2]   B. Kumar, and K. S. N. Raju, “Vapor-liquid equilibrium data for the systems 2-methoxyethanol-ethylbenzene, 2-methoxyethanol-p-xylene, and 2-ethoxyethanol-p-xylene,”  Journal of Chemical and Engineering  Data , 1977, vol. 22, pp. 134–137. [3]   J. A. Riddick, W. B. Bunger, and T. K. Sakano, Organic Solvents: Physical Properties and Methods of Purification . 4th ed. Wiley-Interscience: New York, 1986. [4]   B. K. Sood, O. P. Bagga, and K. S. N. Raju, “Vapor-liquid equilibrium data for systems ethylbenzene-anisole and p-xylene–anisole,”  Journal of  Chemical and Engineering Data , 1972, vol. 17, pp. 435–438. [5]   H. C. Van Ness, and M. M. Abbott, Classical Thermodynamics of Non-electrolyte Solutions . McGraw-Hill: New York, 1982. [6]   E. W. Lyckman, E. C. Eckert, and J. M. Prausnitz, “Generalized Liquid Volumes and Solubility Parameters for Regular Solution Application”, Chemical Engineering Science , 1965, vol. 20, pp. 703– 706. [7]   C. Tsonopoulos, “An empirical correlation of second virial coefficients,”  AIChE Journal,  1974, vol. 20, pp. 263–272. [8]   R. C. Reid, J. M. Prausnitz, and B. E. Poling, The Properties of Gases &  Liquids . 4th ed. McGraw-Hill: New York, 1987. [9]   J. A. Riddick, W. B. Bunger, and T. K. Sakano, Organic Solvents: Physical Properties and Methods of Purification . 3rd ed. Wiley-Interscience: New York, 1970. [10]   T. Boublik, V. Fried, and E. Hala, The Vapor Pressures of Pure Substances . Elsevier: New York, 1975. [11]   E. F. G. Herington, “Tests for the consistency of experimental isobaric vapor-liquid equilibrium data,”  Journal of Institute of Petroleum, 1951, vol. 37, pp. 457–470.  International Journal of Chemical and Biological Engineering 2:3 2009129
Related Search
Similar documents
View more...
We Need Your Support
Thank you for visiting our website and your interest in our free products and services. We are nonprofit website to share and download documents. To the running of this website, we need your help to support us.

Thanks to everyone for your continued support.

No, Thanks